PREPARATION, CHARACTERIZATION AND GAS PERMEATION STUDY OF PSf/MgO NANOCOMPOSITE MEMBRANE
نویسندگان
چکیده
Nanocomposite membranes composed of polymer and inorganic nanoparticles are a novel method to enhance gas separation performance. In this study, membranes were fabricated from polysulfone (PSf) containing magnesium oxide (MgO) nanoparticles and gas permeation properties of the resulting membranes were investigated. Membranes were prepared by solution blending and phase inversion methods. Morphology of the membranes, void formations, MgO distribution and aggregates were observed by SEM analysis. Furthermore, thermal stability, residual solvent in the membrane film and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA). The effects of MgO nanoparticles on the glass transition temperature (Tg) of the prepared nanocomposites were studied by differential scanning calorimetry (DSC). The Tg of nanocomposite membranes increased with MgO loading. Fourier transform infrared (FTIR) spectra of nanocomposite membranes were analyzed to identify the variations of the bonds. The results obtained from gas permeation experiments with a constant pressure setup showed that adding MgO nanoparticles to the polymeric membrane structure increased the permeability of the membranes. At 30 wt% MgO loading, the CO2 permeability was enhanced from 25.75×10 to 47.12×10 mol.m/(m.s.Pa) and the CO2/CH4 selectivity decreased from 30.84 to 25.65 when compared with pure PSf. For H2, the permeability was enhanced from 44.05×10 to 67.3×10 mol.m/(m.s.Pa), whereas the H2/N2 selectivity decreased from 47.11 to 33.58.
منابع مشابه
Synthesis and characterization of optically active polyester thin-film bionanocomposite membrane achieved by functionalized cellulose /silica for gas permeation
Optically active bionanocomposite membranes composed of polyester(PE) and cellulose /silica bionanocomposite (BNCs) are a novel method to enhance gas separation performance. Commercially available silica nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composite...
متن کاملSynthesis and characterization of optically active polyester thin-film bionanocomposite membrane achieved by functionalized cellulose /silica for gas permeation
Optically active bionanocomposite membranes composed of polyester(PE) and cellulose /silica bionanocomposite (BNCs) are a novel method to enhance gas separation performance. Commercially available silica nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composite...
متن کاملSynthesis, Characterization and Vapor Permeation Performance of B-ZSM-5 Membranes
In the present work, B-ZSM-5 zeolite membranes were synthesized on porous tubular α-alumina supports by several subsequence in situ crystallization hydrothermal treatments. The TiO2- Bohmite and ɣ- alumina intermediate layers were applied to improve the lattice matching between zeolite layer and the support. The uniform membrane intermediate layers with low permeation resistance were...
متن کاملPreparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature
The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the mo...
متن کاملPreparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of L-lactic acid and surface-hydroxylated MgO.
Compared with pristine polymers, bionanocomposites derived from biopolymers and inorganic nanoparticles have significantly improved electrical/magnetic properties, mechanical properties, thermal stability, gas barrier properties, and fire retardance. In this study, poly(lactic acid) (PLA) nanocomposites were prepared by in situ melt polycondensation of L-lactic acid with different loading ratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013